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Abstract— This paper compares several algorithm generated
airspace boundary designs, known as sectorizations. Three algo-
rithms are chosen that approach the airspace sectorization prob-
lem in different ways. Due to the disparity in their methods, they
produce radically different looking sectorizations. Simulations of
air traffic operating in each of the sectorizations is completed and
their resulting demand, capacity, complexity, and delay metrics
are compared. All three algorithm generated sectorizations sug-
gested possible improvements in system efficiency and workload
balancing over today’s operations.

Keywords-airspace design; capacity management; dynamic
airspace configuration

NOMENCLATURE

i = flight index
k = quarter-hour index
s = sector index
r = region comprised of a group of sectors
te(s, i) = flight i egress time from sector s
ti(s, i) = flight i ingress time into sector s
tu(i) = flight i unconstrained gate arrival time
tc(i) = flight i constrained gate arrival time
Nf (s) = the set of all flights within sector s between

7AM and 7PM local time
Nf (r) = the set of all flights flying through region r
Ns(r) = the set of all sectors in region r
nf (s) = total number of flights in set Nf (s)
nf (r) = total number of flights in set Nf (r)
ns(r) = total number of sectors in set Ns(r)
c(s) = capacity (MAP value) for sector s
δ(s) = average time a flight spends in sector s
m(s, k) = average flight count in sector s for quarter-hour k
m(s) = average flight count in sector s between

4PM and 12AM UTC
M(r) = average m(s)∀s ∈ Ns(r)
σm(r) = standard deviation of m(s)∀s ∈ Ns(r)
Σc(r) = sum of c(s)∀s ∈ Ns(r)
C(r) = average c(s)∀s ∈ Ns(r)
σc(r) = standard deviation of c(s)∀s ∈ Ns(r)

ρ(s) = flight count/capacity ratio for sector s
P (r) = average ρ(s)∀s ∈ Ns(r)
σρ(r) = standard deviation of ρ(s)∀s ∈ Ns(r)
ε(r) = average total delay for all flights in region r
Rε(r) = recovered average total delay for region r
Rt(r) = recovered average throughput for region r
[x1...x7] = array of 7 complexity components
[w1...w7] = array of 7 complexity weight coefficients
χ(s, k) = sector s complexity for quarter-hour k
χ(s) = average χ(s, k) for 4PM-12AM UTC
X(r) = average χ(s)∀s ∈ Ns(r)
σχ(r) = standard deviation of χ(s)∀s ∈ Ns(r)
subscripts
d = demand, unconstrained
t = throughput, constrained

I INTRODUCTION

Several algorithms have been developed for repartitioning
airspace into sectors given a set of flight tracks. Each algorithm
attempts to laterally partition a layer of airspace to minimize
and/or balance controller workload. They approach the problem
in different ways and produce sectors that are different.

Previous analyses assessed algorithmic success at a regional
scale using different historical flight track data. Reference [1]
compares a current day sectorization with those generated from
two different algorithms. Reference [2] evaluates sectorizations
generated from a single algorithm using different optimization
functions. Both analyses are constrained to the Fort-Worth Cen-
ter and compare aircraft-count metrics based on historical flight
track data. Because of their use of historical flight track data
only, there have been no analyses performed for expected fu-
ture traffic levels. Thus far, a number of algorithms, including
those cited above, have been developed but their relative value
is not known at a national scale or for future traffic levels.

This paper assesses the relative value of several algorithms
for future traffic levels on the national level. That is, a side-
by-side comparison using the same flight track data examined
the comparative value of each algorithm. Also, in addition to
considering current traffic levels, simulations at 1.5 time todays
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traffic level were conducted. These simulations expanded the
previous area of consideration from the regional level to the
entire continental United States airspace.

This paper is organized as follows. Section II presents an
overview of the sectorization algorithms. The experiment de-
sign is presented in section III. Section IV describes the metrics
used to compare the sectorizations. Section V discusses results.
Finally, concluding remarks are presented in section VI.

II SECTORIZATION ALGORITHMS

This section presents an overview of the three algorithms
used to produce sectorizations.They all try to produce a sector-
ization that minimizes or balances a workload metric while con-
forming to traffic flows. The main objective function, method
of conforming to flows, and method for determining the number
of sectors are described for each.

A Flight Clustering Algorithm

The Flight Clustering algorithm[3] groups flight tracks to-
gether to sectorize airspace. It is constrained to a maximum
specified number of flight tracks per cluster. Sector boundaries
are then formed around the clusters. This limits the amount of
workload required to control a sector.

The clustering algorithm approach allows Dynamic
Density[11] metrics to be implicitly manipulated. It attempts
to partition airspace in such a manner that acceptable Dynamic
Density levels are achieved, and the impact on user-preferred
flight routes is minimized. Flight route segments are clustered
according to distances of clustering criteria from the cluster
center. These criteria are selected and weighted to achieve con-
trol over the Dynamic Density of the resulting airspace parti-
tion.

1) Objective Function: The flight clustering objective is to
minimize the sum of the ’distance’ metric between flight tracks
and the assigned cluster center based on the selected clustering
distance criteria. The clustering criteria include current and fu-
ture distance, lateral and vertical speed, and heading. Another
clustering criteria, referred to as the ’Corridor’ criteria, includes
the perpendicular distance of the flight position from the major
axis of the group of flight positions associated with the clus-
ter and the flight’s heading difference with respect to the major
axis. All the above clustering criteria were used for this experi-
ment.

2) Flow Conformance: All of the clustering criteria at-
tempt to group flight tracks that belong to the same flow, espe-
cially the corridor criteria.

3) Number of Sectors: The number of sectors is de-
termined by a user defined target number-of-flight-tracks-per-
cluster parameter. Flight tracks are clustered into groups within
a minimum and maximum threshold of the target number.

B Voronoi Genetic Algorithm

The Voronoi Genetic algorithm[2] uses a Voronoi Diagram
to partition the airspace and a genetic algorithm to optimize the

partitions.

The Voronoi Diagram decomposes a space into subdivisions
around given generating points. All coordinates within a re-
gion associated with a specific generating point are closer to
that generating point than any other generating point.

The genetic algorithm is a guided random search based on
the principals of genetic inheritance and Darwinian evolution.
Here, the genetic algorithm is used to find the set of Voronoi
Diagram generating points that optimize given parameters. This
algorithm can use any number of objective funtions.

1) Objective Function: For this experiment, the genetic al-
gorithm objective function is to maximize a capacity estimate
minus peak aircraft count of each sector. The capacity esti-
mate for each sector is directly related to the average flight time
through that sector.

2) Flow Conformance: Because the capacity estimate for
each sector is directly related to the average flight time through
that sector, sectors with longer average flight times will have
higher capacity and work toward the objective function. Sec-
tors with longer average flight times also tend to align to major
flows.

3) Number of Sectors: The number of resulting sectors
is determined by the number of Voronoi Diagram generating
points chosen to partition a region of airspace. Assuming a goal
average capacity of 15 aircraft per sector, the desired number
of sectors for a given region is estimated by dividing the peak
traffic count for the region by 15.

C Mixed Integer Programming Algorithm

The Mixed Integer Programming (MIP) algorithm[4] dis-
cretizes the airspace into hexagonal cells and clusters the cells
according to workload and connectivity. The workload of a cell
is the number of flight track counts within that cell. Connec-
tivity from cell i to a neighboring cell j is the total number of
fights that travel from cell i to the cell j. Thus, connectivity
is an abstract quantity of workload flow. Flow enters each cell
from at least one of it’s neighbors and exits into exactly one
neighboring cell. The workload of each cell is added to the
flow, which is finally absorbed by a sink cell. A sector consists
of all cells whose flows converge to one sink. Potential sink
cells are chosen at random.

Improvements to the MIP algorithm were made in [5] by
making connectivity between cells symmetric. By redefining
the connectivity between two neighboring cells i and j to in-
clude both flights traveling from cell i to cell j and from cell j
to cell i, flows become bidirectional and give the optimization
more options to find a feasible solution with a lower objective
function.

1) Objective Function: The MIP objective function is to
balance the total number of flights tracks of a cluster of cells
while minimizing the connectivity between cells in different
clusters.

2) Flow Conformance: Becasue the algorithm attempts to



minimize the flow between cells in different sectors, the cell
clusters will tend to be oriented along the dominant traffic flows

3) Number of Sectors: The number of resulting sectors is
determined a priori.

III EXPERIMENT DESIGN

This section discusses how the experiment was designed.
The goal was to perform a side-by-side comparison of the cur-
rent day sectorization and several algorithm generated sector-
izations for the continental US airspace. Therefore, each sec-
torization is generated according to the same guidelines using
the same flight track data.

Rather than using historical data to evaluate the sectoriza-
tions, flight track data is generated through simulation to re-
move the effects of current sector constraints and traffic man-
agement initiatives. Simulating the flight track data also allows
the sectorizations to be evaluated for projected future traffic lev-
els that do not exist in historical data.

Simulations were completed using the Airspace Concept
Evaluation System (ACES) [6]. ACES models gate-to-gate
flight operations on airport surfaces and in terminal and en-
route airspaces. These include gate pushback and arrival, taxi,
runway takeoff and landing, local approach and departure,
climb, decent, transition, and cruise. Air traffic control and traf-
fic flow management models control flights during these opera-
tions to ensure that airport and airspace capacity constraints are
not violated.

Fig. 1 shows the process used to generate sectors, estimate
capacities, and simulate traffic for each algorithm. Each of the
stages in this process are discussed in the following subsections.
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Figure 1: Experiment process.

A Unconstrained Simulation

The first stage of the experiment process is to simulate un-
constrained flight tracks. The unconstrained simulation flies
each flight without any airport or sector capacity constraints ac-
cording to it’s flight plan contained in the flight schedule.

The flight schedule consisted of all the flight plans depart-
ing within 24 hours from a single high-traffic, good-weather
day starting at 4/21/2005 8AM GMT. The last flight plan sub-
mitted before departure for each flight was used. The uncon-
strained simulation produced flight tracks for every minute of

each flight. These flight tracks were used to generate new sec-
torizations with new sector capacities.

B Generating Sectorizations

The second stage of the experiment process generates new
sectorizations using the unconstrained flight tracks produced by
the first stage. Due to the infinite number of ways each sector-
ization algorithm could generate new airspace partitions, the al-
gorithms are made to follow guidelines that make the resulting
sectorizations more comparable. These are described below.

The algorithms all produce lateral airspace divisions for a
given set of flight track data. The current airspace sectoriza-
tion is far more complicated than a single layer of sectors span-
ning the nation. First, national airspace is divided into regions
called centers, and then, it is subdivided into sectors. Sectors
are also stratified into low, high, and super-high altitudes. Sec-
tors within the same stratum may have different altitude ranges.

Future airspace operational concepts do not necessarily pre-
clude the airspace from being redesigned irrespective of center
boundaries. However, in order to make the sectorization com-
parable at a more regional level, all sectorization algorithms
were constrained to redesigning the airspace within the current
center boundaries shown in Fig. 2.
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Figure 2: Continental United States airsapce centers.

Separate sectorizations were created for a high-altitude
airspace layer, occupying flight levels 240 through 350 (23,950
to 35,050 feet), and a super-high-altitude layer, occupying flight
levels 351 and above (over 35,050 feet). Airspace below 23,950
feet was not redesigned.

A current day sectorization from 2005 was modified to be
comparable with the algorithm generated sectorizations. By de-
sign, sectors were already organized within centers, but altitude
ranges were not consistent between altitude stratum. To ensure
that at least the same overall volume of airspace was compared,
the 2005 sectorization was truncated below 23,950 feet. All
sectors with a maximum altitude greater than 23,950 feet were
given a minimum altitude of 23,950 feet. Any sector with a
minimum altitude of 23,950 feet was classified as high altitude,
and any sector that did not have another sector above it was clas-
sified as super-high altitude. Some sectors covered the entire



altitude range and were classified as both high and super-high
altitude sectors, even though they were not split.

C Estimating Sector Capacities

After new sectorizations were generated, their sector capac-
ities were estimated. Several methods for estimating sector ca-
pacity have been proposed in the literature [7, 8]. However, the
most straightforward capacity estimation method, and the one
used for this experiment, is the method used by the FAA to de-
termine Monitor Alert Parameter (MAP) values [9]. The MAP
formula is a function of the average flight time of aircraft in the
sector between 7AM and 7PM local time.

δ(s) =
1

nf (s)

∑
i

(te(s, i)− ti(s, i))∀i ∈ Nf (s) (1)

c(s) =

 5 if 5
3δ(s) ≤ 5

5
3δ(s) if 5 < 5

3δ(s) < 18
18 if 5

3δ(s) ≥ 18
(2)

These equations were used to calculate c(s) for all high and
super-high altitude sectors in a current day sectorization from
2005 and for each of the new sectorizations. The FAA allows
c(s) to be adjusted nominally +/- 3 when needed based on the
judgment of traffic management representatives. Therefore, the
c(s) values calculated for the 2005 sectorization are different
from their published MAP values.

D Constrained Simulation

The final stage of the experiment process is to simulate con-
strained flight tracks for each sectorization. Constraints are ap-
plied to airport and sector capacities in an ACES simulation.
Air traffic control and traffic flow management models control
flights to ensure that capacity constraints are not violated by de-
laying flights along their filed flight plan. For the purposes of
this experiment, only capacity constraints on sectors within re-
designed airspace are applied. Airport capacities and capacities
for airspace outside the scope of this experiment are left uncon-
strained. The sector capacity constrained simulations result in a
unique set of constrained flight track data for each sectorization
simulated. These flight tracks and simulated delays are used to
generate metrics with which to compare the sectorizations.

IV METRICS

This section discusses the metrics used to compare the sec-
torizations. All of the metrics can be applied to a group of sec-
tors. The basic metrics are number of sectors, demand, through-
put, capacity, complexity, and delay. The demand/capacity and
throughput/capacity ratios are also of interest because ideally,
capacity should be placed where demanded.

A Number of Sectors

There were no restrictions made on the number of sectors,
ns(r), generated for a given region r in the new sectorizations.
Everything else being equal, a lower ns is desirable to make
more efficient use of controller resources. There is an inherent
tradeoff between ns and capacity. As ns(r) increases, the sum

capacity in r would be expected to increase as well. However,
increasing ns reduces the average sector size which may make
average δ(s) and c(s) for each sector lower. At some point,
increasing the number of sectors will reduce average sector ca-
pacity so much that the sum capacity of the sectors does not
increase.

B Demand and Throughput

Demand and throughput metrics are based on average in-
stantaneous sector flight counts within quarter-hour intervals.
Demand and throughput are computed from unconstrained
and constrained flight track data, respectively. Demand and
throughput metrics are computed for a region of airspace, r, by
averaging the average instantaneous flight counts per quarter-
hour over the mid 8 hours of the day when traffic is highest.
A region can comprise any group of sectors, such as a single
sector, center, altitude layer, or NAS-wide. Let m(r, k) be the
average flight count in r for quarter-hour, k. The average sector
flight count in r is given by

m(r) =
1
32

k0+32∑
k=k0

m(r, k). (3)

Let the subscripts d and t denote demand and throughput.
Let Md(r) and Mt(r) be the average md(s) and mt(s) for all
s in r. Let σmd

(r) and σmt(r) be the standard deviations for
md(s) and mt(s) for all s in r.

Throughput is desired to be as close as possible to demand.
The ratio of throughput to demand should be as close to 1 as
possible. Recovered throughput is a metric designed to evaluate
how much a new sectorization increases the throughout/demand
ratio from the Current Day sectorization. Let Rt(r) be the re-
covered average throughput in region r given by

Rt(r) = 1− md(r)−mt(r)
md0(r)−mt0(r)

(4)

where the subscript 0 denotes the Current Day sectorization.

Assuming that maximum quarter-hourly flight count is a
major component of controller workload, it is desirable for
σmd

(r) and σmt
(r) to be low in order to balance the workload.

C Capacity

The capacity of each sector is defined according to (1) and
(2). The c(s)s are used as constant constraints for the sector
capacity constrained ACES simulations. Capacity sum, aver-
age, and standard deviation for regions or sectors are computed
as well. Let Σc(r), C(r), and σc(r) be the sum, average, and
standard deviation of c(s) for all s in r.

Higher Σc(r) and C(r) are desirable to enable increased
throughput. Intuitively, a lower σc(r) should be desirable.
However, capacities themselves are designed to keep workload
within acceptable limits. Therefore, there may be a tradeoff
between balancing workload metrics and capacity. It is more
desirable to balance workload metrics than capacity.



D Capacity Ratios

A set of metrics that is perhaps more relevant than de-
mand and throughput, or capacity, are the ratios of demand
and throughput to capacity. Ideally, capacity should be placed
where the demand is in order to maximize overall throughput.
The demand/capacity ratio is a measure of how well the sectors
accommodate the traffic, and the throughput/capacity ratio is a
measure of workload levels.

Let ρd(s) and ρt(s) be the average maximum quarter-hourly
demand/capacity and throughput/capacity ratios for s over the
mid 8 hours of the day given by

ρd(s) =
md(s)
c(s)

(5)

ρt(s) =
mt(s)
c(s)

. (6)

Average and standard deviations of capacity ratios for regions
of sectors are also computed. Let Pd(r) and Pt(r) be the aver-
age ρd(s) and ρt(s) for all s in r. Let σρd

(r) and σρd
(r) be the

standard deviations of ρd(s) and ρt(s) for all s in r.

E Complexity

There has been a lot of research done to develop complexity
metrics that measure controller workload [10, 11, 12, 13, 14,
15]. These efforts concentrate on identifying and validating up
to 52 quantifiable complexity variables based on the factors that
contribute to workload. References [13], [14], and [15] present
the most simplified subset of complexity metrics referred to
as Simplified Dynamic Density (SDD) metrics. SDD metrics
comprise just seven components that can be derived from his-
torical track data. The combined SDD metric was chosen to
represent complexity in this experiment.

The seven components (x1 through x7) of SDD are oc-
cupancy count, proximity, altitude transition, sector bound-
ary crossing, aircraft per sector volume, heading variance, and
cruise speed variance. These are calculated per quarter-hour
and are combined in a weighted sum. Component weights were
taken from [15]. Each component is described below.

1) Occupancy Count (x1) and Aircraft per Sector Volume
(x5): The occupancy count component for SDD metrics is the
average instantaneous sector flight count for the given quarter-
hour. Therefore, x1(s, k) = m(r, k) where Ns(r) = {s}. Air-
craft per sector volume is simply x1 divided by the sector vol-
ume in cubic kilometers.

2) Proximity (x2): Proximity events of different severity
levels are calculated for all aircraft pairs within 10 nmi. Prox-
imity severity levels in [13], [14], and [15] were designed to
account for location uncertainty, time-stamps being recorded
at different times, and one minute granularity. The proximity
severity computations for simulation data have been simplified
with respect to time, because the one minute time-stamps for
each flight are produced for the exact same time. Table I shows
the criteria for calculating proximity severity level between a
pair of aircraft within the same time-stamp.

TABLE I: PROXIMITY SEVERITY LEVEL CRITERIA

Severity Level Vertical Sep. Horizontal Sep.
1 <1000 ft <5 nmi
2 <1000 ft 5 to 7.5 nmi
3 <1000 ft 7.5 to 10 nmi
4 ≥1000 ft <5 nmi

The combined proximity component, x2(s, k), is defined as
follows.

x2(s, k) =
1
4

(4p1 + 2p2 + p3 + p4) (7)

where p1, p2, p3, and p4 indicate the number of proximities
counted in s during k for each corresponding severity level.

3) Altitude Transitions (x3): Altitude transitions are
counted for tracks that climb or descend more than 500 feet
within a minute. x3(s, k) is the sum of all tracks within s dur-
ing k that are not within 500 feet of their last track.

4) Sector Boundary Crossings (x4): Every time a flight
crosses a sector boundary, a boundary crossing is counted for
both the outbound and inbound sector. x4(s, k) is the combined
number of flights that enter or exit s within k.

5) Heading variance (x6) and speed variance (x7): Head-
ing and speed variances, x6(s, k) and x7(s, k), are calculated
for the set of tracks in sector s within k. Variances are calcu-
lated for heading in degrees and for groundspeed in knots.

6) Combined SDD Components: The seven SDD compo-
nents described above were combined in a weighted sum as fol-
lows.

x = [x1, x2, x3, x4, x5, x6, x7] (8)
w = [2.2, .4, .3, .5, 30000, .0005, .0005] (9)
χ = w · x′ (10)

where w weights were taken from [15]. The average complex-
ity for a given sector, χ(s), is calculated similar to m(s) as
follows.

χ(s) =
1
32

k0+32∑
k=k0

χ(s, k) (11)

where k0 is the first quarter hour in the 8 hours for which s has
the highest average traffic counts.

Average and standard deviations of complexity for regions
of sectors are also computed. Let X(r) be the average χ(s) for
all s in r. Let σχ(r) be the standard deviation of χ(s) for all s
in r.

F Delay

ACES collects the time for various events of each simulated
flight. The difference between event times for unconstrained
and constrained simulations is delay. Traffic flow management
models may apply delay multiple times to the same flight in
order to meet multiple constraints. Sector delays are computed



as average total delay for all flights flying through the sector.
Delays by region are computed similarly.

The total delay for a single flight is the difference between
it’s constrained and unconstrained gate arrival time. Let ε(r) be
the average total delay for all flights in region r given by

ε(r) =
1

nf (r)

∑
i

(tc(i)− tu(i))∀i ∈ Nf (r) (12)

where tc(i) and tu(i) are the constrained and unconstrained
gate arrival times for flight i.

V SIMULATION RESULTS

This section presents and discusses the metric comparison
results between sectorizations. Each of the three algorithms
used flight tracks generated from an unconstrained simulation
of a current day traffic schedule (1X) to create unique sectoriza-
tions subject to the guidelines discussed in section III.B. Fig. 3
shows the resulting sectorizations for high altitude Fort Worth
Center in black overlaying flight tracks in grey. The most no-
table difference between the sectorizations are the number of
sectors. This will be discussed in section V.A below. An-
other notable difference is in boundary smoothness. The rough
boundaries in the MIP sectorization are a result of the hex cell
clustering method. All sectorizations tend to direct the major
axis of their sectors toward the middle of the center. This fol-
lows the major flow patterns in and out of this center’s largest
airport located in the middle of the center.

The same set of unconstrained 1X flight tracks were used to
estimate sector capacities for each of these sectorizations and
the modified current day sectorization. These sector capacities
were then used to simulate constrained 1X flight tracks through
each sectorization.

In order to test the sectorizations with more futuristic
flight traffic levels, a flight demand generation tool called
AvDemand[16] was used to homogeneously grow the 1X flight
traffic schedule to 1.5X. Another unconstrained simulation was
used to generate unconstrained 1.5X flight tracks for this traffic
schedule. No new sectorizations or capacity estimations were
generated using the unconstrained 1.5X flight tracks. Instead,
the 1X generated sectorizations and capacity estimations were
used to simulate constrained 1.5X flight tracks.

The resulting 16 sets of flight track data were used to cal-
culate the metrics defined in section IV. They consisted of 4
(sectorizations) by 2 (constrained and unconstrained) by 2 (1X
and 1.5X). The following subsections discuss the compared re-
sults of these 16 sets of metrics.

A Number of Sectors

No design restriction for number of sectors for each region
was placed on the sectorization algorithms. Therefore, some
sectorizations resulted in very different numbers of sectors from
the current day sectorization.

Fig. 4 shows each sectorization’s total number of sectors
for the National Airspace System (NAS), ns(NAS), at each

Current Day
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Figure 3: Traffic patterns and sectorizations for high altitude Fort Worth Center
(ZFW).

altitude stratum. The NAS includes all 20 centers. For the
algorithm generated sectorizations, ns(NASall) is the sum of
ns(NAShigh) and ns(NASsuper). This relationship does not
hold for the current day sectorization becasue there were many
sectors classified as both high and super-high altitude due to the
inconsistent altitude structure. The MIP algorithm was given a
goal number of sectors per center similar to the average number
of sectors at any one altitude for that center. The MIP num-
ber of sectors is the same for both high and super-high altitude
stratums. The number of sectors for the Flight Clustering and
Voronoi Genetic sectorizations were influenced by other algo-
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Figure 4: Total number of sectors in the National Airspace System, ns(NAS),
for each altitude stratum.

rithm parameters as described in sections II.A and II.B. Both
resulted in fewer super-high sectors than high sectors. All the
algorithm generated sectorizations have more total sectors than
the current day sectorization, perhaps because of the NAS-wide
altitude stratification design guideline. The Flight Clustering
produced more than twice as many total sectors. If number-of-
flight-tracks-per-cluster parameter were increased, the resulting
number of sectors would be decreased. A sensitivity analysis
has not yet been completed to determine the optimal parameter
setting.

The relative numbers of sectors per center for each sector-
ization follow similar patters as the NAS. There are several ex-
ceptions for high altitude centers where the Voronoi Genetic al-
gorithm produces close to or more than the number of sectors as
the Flight Clustering Algorithm. These centers are ZDC, ZID,
ZNY, and ZOB, all busy centers.

B Capacity

Like number of sectors, capacity is something that is unique
to each sectorization. Although 1X unconstrained track data
was used to estimate the capacities of each sectioization, the
same set of capacities was used in both the 1X and 1.5X con-
strained simulations.

In general, average capacities, C(r), are lower for the al-
gorithm generated sectorizations than the current day sectoriza-
tion. However, because algorithm sectorization resulted in more
sectors per region, the sum capacities, Σc(NASall), are higher
than for the Current Cay sectorization, especially in the case of
the Flight Clustering sectorization. Fig. 5 shows Σc(NASall)
for each sectorization. The Flight Clustering and Voronoi Ge-
netic algorithms show general increases in σc(r) over Current
Day, whereas the MIP algorithm shows general decreases in
σc(r) over Current Day. Consistency in capacity between sec-
tors is not as important as constancy in capacity ratios or com-
plexity discussed in later sections.

C Demand and Throughput

The demand and throughput metrics are important metrics
for assessing how well the sectorization accommodates traffic
demand. These metrics compare track data from unconstrained
and constrained simulations within the same 1X or 1.5X traf-
fic level. Fig. 6 and 7 show the NAS-wide average through-
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Figure 5: Sum capacity in the National Airspace System, Σc(NASall), for each
sectorization.

put/demand percentages for each altitude stratum for 1X and
1.5X traffic, respectively. Higher percentages indicate that the
traffic is less constrained and throughput is being allowed to
reach demand levels.
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Figure 6: Average 1X Throughput/Demand in the National Airspace System,
mt(NAS)
md(NAS) , for each altitude stratum.

As seen in Fig. 6 for 1X traffic, the algorithm generated
sectorization increases average NAS throughput/demand per-
centages, but there is very little room to improve because the
Current Day sectorization 1X throughput/demand percentage is
already above 99%. In some cases, the percentage is slightly
above 100%. This is possible due to minor traffic schedule
shifting, which causes more aircraft to occupy an airspace at
the same time than was originally demanded.

The 1.5X traffic strains the system to more than the 1X
traffic. It more effectively evaluates the algorithm generated
sectorizations improvements over the Current Day sectoriza-
tion. Fig. 7 clearly shows that all three algorithm generated
sectorizations produce higher throughput/demand percentages
than the Current Day sectorization. Flight Clustering and MIP
sectorizations produce larger improvements at the high altitude
stratum and the Voronoi Genetic algorithm produces the largest
improvement at the super-high altitude stratum.

Fig. 8 shows the recovered throughput, Rt(r), for both stra-
tums combined at each region. For each algorithm generated
sectorization, there are one to three centers with negative re-
covered throughout. These are instances where the throughput
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Figure 8: Percent recovered throughput by region, Rt(r), for 1.5X traffic.

Altitude Stratum

Th
ro

ug
hp

ut
/D

em
an

d

Figure 7: Average 1.5X Throughput/Demand in the National Airspace System,
mt(NAS)
md(NAS) , for each altitude stratum.

is lower than in the Current Day sectorization. This can happen
in less busy centers when the md0(r)−mt0(r) term from Eqn.
4 is less than md(r) −mt(r). In each case, the sectorizations
with negative throughput/demand percentage are the ones with
the lowest number of sectors for the center.

D Capacity Ratios

The standard deviations of demand/capacity and through-
put/capacity ratios between sectors in a region are more im-
portant that the ratios themselves. The standard deviations, es-
pecially for ρd as opposed to ρt, indicate whether capacity is
distributed appropriately to accommodate demand. A smaller
σρ(r) means that the sectorization placed more capacity where
demand needed it, and less capacity where it wasn’t needed.
Because, each sectorization was design for a single center at
a single stratum at a time, it makes the most sense to evaluate
σρ(r) at the single center and stratum level.

Fig. 9 shows the average σρd
(r) across all centers in each

altitude stratum for each sectorization. All three algorithm gen-
erated sectorizations show a reduced average σρd

(r) over the
Current Day sectorization. The MIP algorithm does an espe-
cially good job of distributing capacity appropriately to match
demand. It has half the average σρd

(r) for high altitude and a
quarter the average σρd

(r) for super-high altitude.

The 1X average σρt
(r)s are almost identical to the 1X av-

erage σρd
(r)s . This is not surprising, considering how little

throughput deviated from demand for all of the 1X simulations.

Both the average σρd
(r)s and σρt(r)s for 1.5X show the ex-
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Figure 9: Average 1X standard deviation of Demand/Capacity for all center
regions within each altitude stratum.

act same trend between sectorizations and altitude stratum as
in Fig. 9. The the average σρd

(r)s increased by 70% and the
average σρt

(r)s increased by 46% between 1X and 1.5X traf-
fic levels. The percent increase in average σρd

(r) is the same
as the percent increase in Pd(r). This indicates that the 1.5X
flight tracks are a good representation of homogeneous 1.5X
growth from the 1X flight tracks. The percent increase in aver-
age σρt

(r) is a little lower than the percent increase in Pt(r) due
to the smoothing effect of delaying flights to meet the capacity
constraints.

E Complexity

Complexity is computed to serve as a more realistic measure
of controller workload than just occupancy count. All of the
sectorization algorithms utilize metrics that relate to complexity
components other than occupancy count. Although, occupancy
count is still a driving factor in the design.

Fig. 10 shows the average NAS-wide complexity within
each altitude stratum for 1X and 1.5X, and unconstrained and
constrained simulations. Because occupancy count is a heavily
weighted component of complexity, 1.5X has larger X(NAS)s
than 1X, andXt(NAS) is lower thanXd(NAS) for every sector-
ization as occupancy counts are controlled to be below capacity
contraints. Xt(NAS) is only slightly lower than Xd(NAS) for
1X because the throughput did not deviate from demand much
at 1X.

The Flight Clustering sectorization reduces complexity the
most due to it’s high number of sectors and consequently low
number of flights per sector. Other complexity components in-
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Figure 11: Percent that Xd(r) is reduced from the Current Day to each algorithm generated sectorization by region for 1X traffic.
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Figure 10: Average Complexity in the National Airspace System, X(NAS),
within each altitude stratum.

crease more for Flight Clustering due to the reduced average
size of more sectors, but reduced occupancy count makes up
for increases in other components. The Voronoi Genetic sector-
ization has the most similar X(NAS) between altitude stratums
because number of sectors designed for each center and altitude
stratum were based on the occupancy count. MIP is the only al-
gorithm generated sectorization with higherX(NAS) than Cur-
rent Day for the high-altitdue stratum. MIP also had the least
number of sectors at this stratum.

Fig. 11 shows the percentage each algorithm generated sec-
torization reduces Xd(r) from the Current Day sectorization at
1X broken out by center regions. The Flight Clustering sec-
torization is the only one that reduces Xd(r) for every center.
Many of the centers for which the Voronoi Genetic or MIP sec-
torization increase complexity are the same centers for which
Rt(r) was negative in Fig. 8. These were the centers with the
lowest number of sectors.

Fig. 12 shows the average σχ(r) for all centers within each
altitude stratum for 1X and 1.5X and unconstrained and con-
strained simulations. Average σχ(r) follows the same trend as
X(NAS) between 1X and 1.5X and between unconstrained and
constrained simulations. Super-high altitude average σχ(r)s are
consistantly lower than for High altitude.

Average σχ(r)s are significantly lower for the algorithm
generated sectorizations than the Current Day sectorization.
The Flight Clustering and Voronoi Genetic sectorizations have
very similar average σχ(r). The average σχ(r) for MIP is much
lower in each case. This means that the MIP algorithm did the
best job of distributing workload, as measured by SDD com-
plexity, evenly between sectors.
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Figure 12: Average standard deviation of Complexity for all centers, σχ(r),
within each altitude stratum.

F Delay

Delay is the ultimate measure of cost to the airspace system
customers. Table II shows the average total delay simulated for
all flights, ε(NAS), at 1X and 1.5X traffic for each sectoriza-
tion. All of the algorithm generated sectorizations significantly
reduce delay by similar amounts. While delays are still reduced
at 1.5X, the amount varies more by sectorization.

The Voronoi Genetic algorithm shows the most robust parti-
tioning with respect to delay for increasing traffic demand. The
Voronoi Genetic objective function directly affected delay by
minimizing the possibility of traffic demand exceeding capac-
ity constraints.

TABLE II: ε(NAS) FOR EACH CONSTRAINED SIMULATION.

Sectorization ε(NAS) for 1X ε(NAS) for 1.5X
Current Day 3.99 min 45.02 min
Flight Clustering 0.39 min 18.68 min
Voronoi Genetic 0.47 min 16.50 min
MIP 0.55 min 30.11 min

Fig. 13 and 14 show the percent recovered delay, Rε(r),
for each center region. There were more instances of negative
Rε(r), indicating increased delay over the Current Day sector-
ization. This is because at many centers, the 1X traffic did not
stress the system enough to incur significant delay, especially
Cleveland Center (ZOB). ZOB is a very busy center for which
the airspace was more recently designed than other centers to
accommodate it’s high demand. Only the MIP sectorization
shows negative Rε(r) at 1.5X for the same three centers with
significant negative Rε(r) at 1X.
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Figure 13: Percent recovered delay by region, Rε(r), for 1X traffic.
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Figure 14: Percent recovered delay by region, Rε(r), for 1.5X traffic.

G Results Summary

The benefits of new airspace configurations are expected to
include improved system efficiency and more balanced con-
troller workload. A few of the metrics discussed above, Rt
and Rε reflect system efficiency. σχd

and σρd
reflect controller

workload balance. These metrics, along with number of sec-
tors, portray a summary of new sectorization benefits.

Table III shows the total number of sectors, system effi-
ciency, and workload balancing metrics computed for the entire
NAS for each sectorization with 1.5X traffic. The best result
for each metric is underlined. Some of these metrics portray

TABLE III: NAS-WIDE SUMMARY METRICS FOR EACH SIMULATION WITH
1.5X TRAFFIC.

Sectorization Rt Rε σχd σρd ns

Current Day – – 16.8 0.22 470
Flight Clustering 55% 59% 13.4 0.16 1031
Voronoi Genetic 50% 63% 14.0 0.17 565
MIP 31% 33% 12.5 0.18 593

the sector benefits a little differently with respect to one an-
other when altitude stratum are combined vs. when they are
computed separately. All three algorithm generated sectoriza-
tions show improvements in all summary benefit metrics ex-
cept number of sectors. Flight Clustering more than doubles
the number of sectors. Voronoi Genetic and MIP methods have
more comparable numbers of sectors to current day but still in-
crease the total number. This may be due to the NAS-wide alti-
tude stratification guideline. There are many areas of the NAS

where a single stratum of sectors is used from above flight level
240, whereas algorithm generated sectorizations assumed two
stratum. Flight Clustering and Voronoi Genetic show compara-
ble benefits in both system efficiency and workload balancing
metrics, but the Voronoi Genetic sectorization has a much more
comparable number of sectors to current day than the Flight
Clustering sectorization. MIP shows lower system efficiency
gains than the other two sectorizations, but it is very good at
balancing complexity and demand/capacity between sectors,
while maintaining a comparable number of sectors to current
day. Due to it’s low number of sectors, most robust increases
in system efficiency, and second best workload balancing, the
Voronoi Genetic sectorization appears to be the best sectoriza-
tion compared in this experiment.

VI CONCLUSIONS

This experiment is the first US nationwide, side-by-side
comparison of different algorithm-generated sectorizations.
Simulating traffic through each of these sectorizations for a
1.5X traffic schedule improved the comparison by stressing the
system enough to evaluate the algorithms strengths and weak-
nesses.

Each algorithm shows its strengths and weaknesses through
the different metrics. The Flight Clustering sectorization sig-
nificantly increased throughput, while reducing complexity and
delay, but only at the cost of doubling the number of sectors that
exist in today’s system. The Voronoi Genetic sectorization had
a more comparable number of sectors to today’s system, while
increasing throughput and reducing delay similar to the Flight
Clustering algorithms. The Voronoi Genetic sectorization had a



more modest reduced complexity over the Current Day sector-
ization with respect to Flight Clustering. The MIP sectorization
also had comparable numbers of sectors to Current Day with
similar increases in throughput to Flight Clustering and Voronoi
Genetic. However, the MIP algorithm’s greatest strength was
in balancing capacity and complexity. Overall, the Voronoi Ge-
netic sectorization performed the best in this experiment.

Two major realizations from this experiment were that the
number of sectors designed for each region and the altitudes at
which airspace is stratified are not trivial airspace design fac-
tors. These design factors need to be better incorporated into
the algorithms. The number of sectors has been well integrated
in to the Flight Clustering design but sensitivity analyses still
need to be performed to evaluate how the rest of the metrics are
affected as the number-of-flight-tracks-per-cluster parameter is
increased and the number of sectors decreases.

All three algorithm sectorization showed improved system
efficiency and workload balancing over current day. This indi-
cates that these sectorization methods have merit and are worth
continued development and more detailed analysis.
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